0% found this document useful 0 votes926 views8 pagesCopyright© © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes926 views8 pagesDeterminan Dengan Ekspansi KofaktorJump to Page You are on page 1of 8 You're Reading a Free Preview Pages 5 to 7 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
untukmencari determinan matrik A maka, detA = ad - bc Determinan dengan Ekspansi Kofaktor Determinan dengan Minor dan kofaktor A= -2 +3 = 1(-3) - 2(-8) + 3(-7) = -8 Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan
Apa itu Ekspansi Kofaktor?Metode ekspansi kofaktor adalah suatu metode untuk menghitung determinan dengan menggunakan kofaktor yang mengutamakan kemampuan berhitung secara manual dan secara apa itu kofaktor?Metode SarrusMetode Kupu-KupuSebelum mengenal apa itu kofaktor, mari kita ingat kembali pada saat duduk di bangku SMA kita sudah mengenal dan memahami aturan sarrus untuk matriks 3×3 dan metode kupu-kupu untuk matriks 2×2.Perhatikan contoh berikut Didefinisikan matriks \A\ dan \B\ sebagai berikut $$A=\left[{\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}}\right],~B=\left[{\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}}\right]$$Kita akan menentukan determinan matriks \A\ dan \B\. Berdasarkan metode kupu-kupu pada matriks \A\ kita peroleh $$\begin{aligned}\text{det}A&=a_{11}a_{22}-a_{12}a_{21}\\&=a_{11}-1^{1+1}a_{22}+a_{12}-1^{1+2}a_{21}\\&=a_{11}-1^{1+1}\left{a_{22}}\right+a_{12}-1^{1+2}\left{a_{21}}\right\end{aligned}$$dan pada matriks \B\ dengan berdasarkan aturan sarrus dan kupu-kupu kita peroleh $$\begin{aligned}\text{det}B&=b_{11}b_{22}b_{33}+b_{12}b_{23}b_{31}+b_{13}b_{21}b_{32}-b_{13}b_{22}b_{31}-b_{11}b_{23}b_{32}-b_{12}b_{21}b_{33}\\&=b_{11}-1^{1+1}\left{b_{22}b_{33}-b_{23}b_{32}}\right+b_{12}-1^{1+2}\left{b_{21}b_{33}-b_{23}b_{31}}\right+b_{13}-1^{1+3}\left{b_{21}b_{32}-b_{22}b_{31}}\right\\&=b_{11}-1^{1+1}\left{\begin{array}{cc}b_{22}&b_{23}\\b_{32}&b_{33}\end{array}}\right+b_{12}-1^{1+2}\left{\begin{array}{cc}b_{21}&b_{23}\\b_{31}&b_{33}\end{array}}\right+b_{13}-1^{1+3}\left{\begin{array}{cc}b_{21}&b_{22}\\b_{31}&b_{32}\end{array}}\right\end{aligned}$$Dari pernyataan di atas bahwa determinan matriks \B\ dapat dicari dengan menggunakan determinan matriks yang lebih kecil, begitu pula pada matriks \A\.Kemudian pada contoh di atas tanpa kita sadari, juga telah menerapkan konsep kofaktor, untuk lebih jelasnya, berikut definisi kofaktor Definisi Kofaktor Jika \A_{n\times n}=\left[{a_{ij}}\right]\ maka kofaktor dari \a_{ij}\ dapat lambangkan \C_{ij}\ dan \C_{ij}=-1^{i+j}M_{ij}\, dengan \M_{ij}\ menyatakan minor dari \a_{ij}\ dan \M_{ij}\ adalah determinan dari submatriks \A\ yang diperoleh dengan mencoret semua entri pada baris ke-\i\ dan semua entri pada kolom ke-\j\.Baca juga Definisi Fungsi Determinan dengan Perkalian ElementerContoh 1 Tentukan minor dan kofaktor dari entri \a_{12}, a_{31}\ dan \a_{23}\ pada matriks \A\ berikut $$A=\left[{\begin{array}{ccc}2&-1&1\\1&0&-1\\2&-2&0\end{array}}\right]$$Penyelesaian Minor \a_{12}\ diperoleh dengan cara mencoret semua entri pada baris ke-\1\ dan semua entri pada kolom ke-\2\, kemudian dihitung determinannya $$M_{12}=\left{\begin{array}{cc}1&-1\\2&0\end{array}}\right=10-12=2$$dan kofaktor dari \a_{12}\ adalah $$C_{12}=-1^{1+2}M_{12}=-1\times 2=-2$$Dengan cara yang sama kita cari minor dan kofaktor dari \a_{31}\ dan \a_{23}\.$$M_{31}=\left{\begin{array}{cc}-1&1\\0&-1\end{array}}\right=1~\text{sehingga}~C_{31}=-1^{3+1}M_{31}=1$$dan$$M_{23}=\left{\begin{array}{cc}2&-1\\2&-2\end{array}}\right=-2~\text{sehingga}~C_{23}=-1^{2+3}M_{23}=2$$Selanjutnya kita akan menghitung determinan suatu matriks persegi dengan menerapkan konsep ekspansi Determinan dengan Metode Ekspansi KofaktorDeterminan dari matriks \A_{n\times n}=\left[{a_{ij}}\right]~\forall~i,j =\{1,2,3,\dots,n\}\ dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau dalam suatu kolom dengan kofaktor-kofaktornya. Kemudian menjumlahkan semua hasil-hasil kali yang dihasilkan, atau dapat ditulis $$\text{det}A=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$$Karena baris ke-\i\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang baris ke-\i\$$\text{det}A=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{in}$$Karena kolom ke-\j\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang kolom ke-\j\Contoh 2 Didefinisikan matriks \A\ sebagai berikut $$A=\left[{\begin{array}{ccc}3&0&-2\\2&5&1\\-1&3&1\end{array}}\right]$$Dengan metode ekspansi kofaktor tentukan determinan matriks \A\.Penyelesaian Tips pilih baris atau kolom yang mengandung banyak unsur/entri nol agar perhitungan menjadi lebih pilih baris pertama \a_{12}=0\ sehingga kita dapat tuliskan $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}\\&=a_{11}C_{11}+a_{13}C_{13}\dots*\end{aligned}$$Kemudian kita cari nilai dari masing-masing kofaktor $$M_{11}=\left{\begin{array}{cc}5&1\\3&1\end{array}}\right=2~\Rightarrow~C_{11}=-1^{1+1}2=2$$$$M_{13}=\left{\begin{array}{cc}2&5\\-1&3\end{array}}\right=11~\Rightarrow~C_{13}=-1^{1+3}11=11$$Sehingga jika kita subtitusikan ke persamaan \*\ akan diperoleh $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{13}C_{13}\\&=32+-211\\&=-16\end{aligned}$$Baca juga Alasan Metode Sarrus Hanya Berlaku pada Matriks 3×3Kelebihan Metode Ekspansi Kofaktor1. Dapat diterapkan pada matriks persegi 2×2 atau metode sarrus terbatas pada ordo \3 \times 3\ maka untuk menghitung determinan dengan ordo yang lebih tinggi \4\times 4, 5\times5,\dots,n\times n\ dapat menggunakan metode ekspansi dimulai dari matriks 2×2 ?Hal ini karena pada matriks 1×1 dalam mencari determinannya cukup menggunakan definisi saja, dimana jika terdapat matriks \A_{1\times1}=\left[a_{11}\right]\ maka determinannya adalah \\text{det}A=a_{11}\.2. Efektif untuk yang suka perhitungan manual dan secara ini didapat dari perbandingan dengan metode lainnya seperti aturan sarrus dan reduksi baris, dimana masing-masing mempunyai kelebihan tersendiri. Ekspansi kofaktor juga sekaligus dapat melatih ketahanan dalam berhitung, kita ambil contoh pada saat mencari determinan \A_{5\times 5}\ maka kita akan menemukan determinan dari submatriks dari \A\ yang berukuran \4 \times 4\, dimana determinan dari submatriks tersebut kita hitung juga dengan ekspansi kofaktor sehingga akan ditemukan determinan submatriks dari submatriks \A\ yang berukuran \3 \times 3\ dan paham konsep dari ekspansi kofaktor dan mempunyai hitungan yang tepat maka metode ekspansi kofaktor akan efektif Konsep kofaktor berguna untuk mencari invers saat duduk dibangku SMA pasti sudah mengenal rumus mencari invers berikut $$A_{n\times n}^{-1}=\frac{\text{Adjoin}A}{\text{det}A}$$Pada persamaan tersebut terdapat Adjoin\A\ yang didefinisikan sebagai transpose matriks kofaktor dari \A\ dapat kita tuliskan $$\text{Matriks kofaktor A}=\left[{\begin{array}{cccc}C_{11}&C_{12}&\dots&C_{1n}\\C_{21}&C_{22}&\dots&C_{2n}\\\vdots&\vdots&\ddots&\vdots\\C_{n1}&C_{n2}&\dots&C_{nn}\end{array}}\right]$$Maka $$\text{Adjoin}A=\left[{\begin{array}{cccc}C_{11}&C_{21}&\dots&C_{n1}\\C_{12}&C_{22}&\dots&C_{n2}\\\vdots&\vdots&\ddots&\vdots\\C_{1n}&C_{2n}&\dots&C_{nn}\end{array}}\right]$$Dari kenyataan tersebut, jelas bahwa konsep kofaktor dapat dimanfaatkan untuk mencari invers matriks. Sehingga tidak ada salahnya mempelajari ekspansi kofaktor, namun disamping itu metode ekspansi kofaktor menurut penulis masih terdapat Metode Ekspansi KofaktorMenurut penulis metode ekspansi kofaktor dalam segi kecepatan masih kurang jika dibandingkan dengan metode campuran yaitu gabungan dari macam-macam metodesarrus, kupu-kupu, ekspansi kofaktor, reduksi baris dan lainnya yang dipadukan dengan sifat-sifat postingan ini kita tidak akan membahas mengenai metode reduksi baris. Sehingga sekarang untuk membuktikan argumen tersebut, saya asumsikan kita sudah memahami metode reduksi 3 Misalkan kita akan menghitung determinan matriks \A\ sebagai berikut $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\2&7&2&1\\1&6&4&-1\\-3&3&1&2\end{array}}\right$$Kita akan mereduksi matriks tersebut dengan mengenakan operasi baris elementer \-2R_{1}+R_{2}\rightarrow R_{2}\\-R_{1}+R_{3}\rightarrow R_{3}\\3R_{1}+R_{4}\rightarrow R_{4}\secara berturut-turut sehingga kita peroleh $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\0&-1&-8&5\\0&2&-1&1\\0&15&16&-4\end{array}}\right$$Nah, selanjutnya kita kenakan metode ekspansi kofaktor, kita pilih entri-entri pada kolom pertama dimana \a_{11}=1\ dan \a_{21}=a_{31}=a_{41}=0\.$$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}+a_{41}C_{41}\\&=C_{11}\end{aligned}$$Dengan aturan sarrus kita peroleh $$\begin{aligned}M_{11}&=\left{\begin{array}{cccc}-1&-8&5\\2&-1&1\\15&16&-4\end{array}}\right\\&=-1-1-4+-8115+5216-5-115-1116-82-4\\&=63\end{aligned}$$Sehingga kita peroleh $$\text{det}A=C_{11}=-1^{1+1}M_{11}=163=63$$Jadi dengan menggunakan metode campuran akan lebih efektif, namun kita dituntut untuk sekreatif mungkin untuk menyusun alur perhitungan yang termudah.
Menghitungdet (A) dengan ekspansi kofaktor sepanjang baris ke-i det (A) = a i1 C i1 + a i2 C i2 ++ a in C in = •Menghitung det (A) dengan ekspansi kofaktor sepanjang kolom ke-j det (A) = a 1j C 1j + a 2j C 2j ++ a nj C nj = 1 n ij ij j ac ¦ 1 n ij ij i ac ¦
Pada tulisan ini saya akan membagikan sidikit ilmu yang saya dapat tentang bagaimana cara menghitung determinan matriks. Metode yang digunakan adalah menggunakan Ekspansi Kofaktor. Metode ini tidak hanya digunakan untuk menghitung determinan matriks atau tapi digunakan untuk matriks yang berordo lebih besar lagi seperti, dan seterusnya. Untuk menghitung determinan menggunakan metode ini, rumusnya dijamin oleh Teorema berikut. Teorema 1. Determinan matriks yang berukuran dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap dan , maka detA = a 1j C 1j + a 2j C 2j + … + a nj C nj ekspansi kofaktor sepanjang kolom ke-j atau detA = a i1 C i1 + a i2 C i2 + … + a in C in ekspansi kofaktor sepanjang baris ke-i Untuk lebih memperjelas apa itu kofaktor, perhatikan Definisi dibawah ini. Definisi 2. Jika A adalah matriks kuadrat, maka minor entri a ij dinyatakan oleh M ij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Bilangan -1 i+j Mij dinyatakan oleh C ij dan dinamakan kofaktor entri a ij. Contoh 3. Misalkan kita punya matriks A =. Tentukan minor entri a 11 , a 12 , dan a 13. Tentukan juga kofaktor entri M 11 , M 12 dan M 13 ! Penyelesaian. minor entri a 11 adalah M 11 = = = 58 – 46 = 16 kofaktor a 11 adalah C 11 = -1 1+1 M 11 = -1 2 16 = 16
Nah dari sini ada dua opsi utama untuk mendapatkan layang-layang tersebut, yaitu pertama dengan memanjat pohonnya langsung (menghitung determinan dengan cara umum seperti ekspansi kofaktor atau lainnya) dan opsi kedua menggunakan tangga untuk naik ke atas pohon tersebut.
Perhitungandeterminan dibagi menjadi ekspansi baris dan kolom. Kofaktor merupakan salah satu langkah yang biasanya kita lakukan dalam mencari invers suatu matriks. Contoh Soal Eliminasi Gauss Determinan Matriks 4x4 dengan Metode Ekspansi Laplace matriks 5x5 metode kofaktor dan sarrus - YouTube
Minorf Minor g Minor h Minor i Minor A Kofaktor Kofaktor A Adjoin Adj A Invers Matriks Dari keseluruhan langkah Sarrus Minor Kofaktor dan Adjoin Jika digabungkan akan diperoleh rumus dan cara cepat invers matriks 3×3 metode Minor r T 7 MODUL 2 DETERMINAN DAN INVERS MATRIKS January 4th, 2021 - DETERMINAN DAN INVERS MATRIKS 2 1 Determinan
Dalammencari determinan matriks berordo lebih dari 2 x 2, kita dapat menggunakan ekspansi kofaktor-minor. Dalam cara ini, penting untuk memperhatikan tanda dari determinan untuk matriks ordo 3 x 3 sebagai berikut. Sehingga, ekspansi kofaktor-minor pada baris ketiga berarti: Dengan demikian, nilai determinan dari matriks adalah .
Untukmenentukan determinan dari sebuah matriks, terdapat dua aturan berdasarkan ordonya, yaitu ordo 2x2 dan ordo 3x3. Determinan matriks persegi dengan ordo 3x3 dapat dihitung dengan menggunakan dua cara, yaitu kaidah Sarrus dan ekspansi kofaktor. Namun, cara yang paling sering digunakan dalam menentukan determinan matriks ordo 3x3 adalah
EF5Osk. akiz3ujzos.pages.dev/238akiz3ujzos.pages.dev/391akiz3ujzos.pages.dev/402akiz3ujzos.pages.dev/38akiz3ujzos.pages.dev/254akiz3ujzos.pages.dev/42akiz3ujzos.pages.dev/442akiz3ujzos.pages.dev/150
menghitung determinan dengan ekspansi kofaktor